
S3C Update GitHub
2025
@kommendorkapten @tinaheidinger

@kommendorkapten

Fredrik Skogman
Staff Software Engineer

Who are we?

Tina Heidinger
Senior Product Manager

@tinaheidinger

Agenda

● Artifact Attestations
● Demo
● Customer adoption
● Lessons learned
● Future plans & roadmap

Early adopters include
Homebrew

All bottles built with
attested build provenance

Feature is still in beta
Homebrew verification)

GA since June 2024

Available for OSS npm
since October 2023

Free for open source

Guarantees integrity for
artifacts built on GitHub
Actions

Offering a simple path to
Sigstore based signing for
all OSS

GitHub Artifact Attestations

GitHub Artifact Attestation

● Capture non-forgeable metadata about the build (provenance)
● Prove integrity from source to build step to consumer

○ Verifiable metadata allows for rich policies
● Use workload identities instead of human identities
● GitHub provides PKI

○ Developer doesnʼt need to manage keys

SCM CI/CD Registry User

Sigstore

OpenSSF project

Signing and verification of
binary artifacts

Public Good Instance

The Update Framework

CNCF project

Secure updates over
untrusted channels

Secure trust root
management and delivery

SLSA Supply-chain
Levels for Software
Artifacts)

OpenSSF Project

Open specification for
build provenance as
in-toto predicates

Built on open source

● Offer a “battery included” experience of using Sigstore

● Sigstore only signs and verifies – integration to build
systems has to be provided

● Build provenance generation

● Attestation discovery and storage
○ Sigstore doesn’t offer a solution
○ Access controls
○ Content addressable storage

Artifact attestations

Why not just use PGI Sigstore?

GitHub Artifact
Attestations
How to use it

Create an
attestation:

Add the following to your GitHub
Actions workflow that creates the
artifact, and has
attestations:write permissions:

- name: Attest Build Provenance
uses: actions/attest-build-provenance@v2
with:

subject-path: “bin/my-artifact.tar.gz”

Verify an
attestation:

● GitHub CLI
gh attestation verify
my-artifact.tar.gz -o
my-organization

● Kubernetes Admission
Controller

● Download attestation for offline
verification

● Signed != secure

● Security best practices for builds have to be followed

● CODEOWNERS

● Reusable workflows (SLSA provides one)

○ Separation of build instructions and code

○ Build isolation

Artifact attestations

Security considerations

● @solana/web3.js (December 2024)
○ It appears malicious actors got push access to npm
○ No build provenance generated

● Ultralytics (December 2024)
○ GitHub Action template injection attack
○ Exfiltrated push token to PyPI
○ Transparency log entry/attestation proved very useful

during forensic analysis
○ Second release did not contain build provenance

● Kong ingress controller (January 2025)
○ DockerHub push credentials stolen via Pwn Request
○ No build provenance generated

Artifact attestations

Relation to real world attacks

● Loved by thousands of organizations
● Integrated with OSS ecosystems
● Adoption drivers: Build integrity, compliance, adherence

to industry standards and best practices (SLSA)
● Integration through consolidation of CI/CD on an

enforced set of reusable workflows

Artifact attestations

Customer adoption & success stories

● Ease of use is key!
● Customers find it challenging to determine what to verify

and where in the SDLC to enforce policies
● Custom use cases require a flexible attestation framework
● Tool interoperability and vencor-agnostic solutions matter
● Provenance is just the beginning

Artifact attestations

Lessons learned

● Enhanced attestation lifecycle management capabilities
● Tooling compatibility - meet customers where they are
● Deeper integration into GitHub (immutable actions,

immutable releases)
● Artifacts as first-class citizens
● Prioritization of security alerts based on artifact metadata

Artifact attestations

Future plans & roadmap

Thank you

