
Fixing breaking dependency
updates with LLM

Speaker: Frank Reyes

Supervisors: Martin Monperrus and Benoit Baudry

Introduction

2

Dependency
update

Client
application

Break client
application

Challenges
• Identify the source of the error from large volumes

of log data.
• Distinguish between warnings and critical errors.

breaking

Breaking Update

Dependency update

3

One single change in the pom.xml file

Break client application

● External dependencies are essential, but upgrades can be a risk.
● We need to understand and reproduce the failures in order to

resolve them effectively.

Breaking
Dependency

Update

What is a Breaking dependency update?

4

Pair Commits

Pre breaking
commit

Build project

Breaking
commit

F. Reyes, Y. Gamage, G. Skoglund, B. Baudry and M. Monperrus, "BUMP: A Benchmark of Reproducible Breaking Dependency Updates," 2024
IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), Rovaniemi, Finland, 2024, pp. 159-170, doi:
10.1109/SANER60148.2024.00024.

Example of breaking dependency updates

5

Dependency updates can introduces incompatible changes:
● Renamed or removed methods
● Visibility changes (e.g., public → private)
● Parameter changes

Causes: Compilation errors, test failures

[ERROR]/incrementals-tools/lib/src/main/java/io/jenkins/tools/incremental
s/lib/UpdateChecker.java:[239,126] status has private access in
org.kohsuke.github.GHCompare

Our Goal

Fix Breaking Dependency updates using LLM

● LLMs offer adaptive, contextual code generation

Previous approaches:
● Rule-based transformations, rigid and limited
● Static analysis, lacks flexibility

Byam: an approach to fix breaking dependency updates using LLM

Methodology

7

Extract
Error

Context

Prompt
LLM for

 code Fix

Rebuild and
Analyze

Outcome

• Extraction of error lines from
the logs

• Extract differences between
dependency version

• Build prompt template
• Buggy Line
• Error Messages
• API Differences
• CoT

• Update LLM generated
code into the project

• Re-run the build and
tests

Step 1: Extract build information

8

[ERROR]/incrementals-tools/lib/src/main/java/io/jenkins/tools/incremental
s/lib/UpdateChecker.java:[239,126] status has private access in
org.kohsuke.github.GHCompare

File path Buggy line

Step 1: Extract build information

9

[ERROR]/incrementals-tools/lib/src/main/java/io/jenkins/tools/incremental
s/lib/UpdateChecker.java:[239,126] status has private access in
org.kohsuke.github.GHCompare

File path Buggy line

The error is caused by a change in the API of the dependency. The new library version
includes the following changes:
 - ***! MODIFIED CLASS: PUBLIC org.kohsuke.github.GHCompare (not serializable)

***! CLASS FILE FORMAT VERSION: 52.0 <- 49.0
***! MODIFIED FIELD: PRIVATE (<- PUBLIC)org.kohsuke.github.GHCompare$Status

status

API Changes

Buggy Line

GHCompare.Status status = GitHub.connect().getRepository(ghc.owner + '/' + ghc.repo).getCompare(branch, ghc.hash).status;

Step 2: Prompt LLM for code fix
Variation Description

Baseline Prompt Includes client code and error message but

excludes additional context.

Buggy Line Inclusion Adds the specific line of code causing the

compilation error.

API Differences (API

Diff)

Includes details of API differences between

dependency versions.

Chain of Thought

(CoT) Prompting

Guides LLM reasoning by incorporating

structured reasoning steps.

10

Step 2: Prompt LLM for code fix
Prompt ID Prompt Name Client

Code

Error

Message

Buggy Line APIDiff CoT

P1 Baseline Prompt ✓ ✓

P2 Buggy Line ✓ ✓ ✓

P3 APIDiff ✓ ✓ ✓

P4 Buggy Line +

APIDiff

✓ ✓ ✓ ✓

P5 CoT Prompt ✓ ✓ ✓

P6 CoT + Buggy Line ✓ ✓ ✓ ✓

P7 CoT + API Diff ✓ ✓ ✓ ✓

P8 CoT + Buggy Line

+ APIDiff

✓ ✓ ✓ ✓ ✓

11

Step 2: Prompt LLM for code fix

12

Step 2: Prompt LLM for code fix

the error is triggered in the following specific lines in the previous code: <buggy line>

Buggy Line

The error is caused by a change in the API of the dependency. The new library version
includes the following changes: <api diff>

API DIff

Before proposing a fix, please analyze the situation and plan your approach within <repair strategy > tags:
– Identify the specific API changes that are causing the failure in the client code.
– Compare the old and new API versions, noting any changes in method signatures,
return types, or parameter lists.
– Determine which parts of the client code need to be updated to accommodate these
API changes.
– Consider any constraints or requirements for the fix (e.g., not changing function
signatures, potential import adjustments).
– Plan the minimal set of changes needed to fix the issue while keeping the code
functional and compliant with the new API.
– Consider potential side effects of the proposed changes on other parts of the code.
– Ensure that the planned changes will result in a complete and compilable class.
– If applicable, note any additional imports that may be needed due to the API changes. 13

CoT

Step 3: Rebuild

LLM-generated fixed code replaces
buggy files

● Rebuild project (e.g., mvn
test)

Track success:
Build success?
Fixed files?
Fixed errors?
Any new errors introduced?

14

Experimental Setup

Dataset: BUMP – 571 real-world Breaking dependency
updates

● 243 (43%) Compilation failures
● 103 breaking dependency updates

LLMs evaluated:
● OpenAI o3-mini
● GPT-4o-mini
● Google Gemini Flash
● DeepSeek V3
● Qwen2.5-32B-instruct

15

Evaluation metrics

1. Build Success Rate (BSR) – full builds fixed

2. File Fix Success Rate (FFSR) – % files with no errors, from failed
repairs

3. Compilation Error Fix Rate (CEFR) – % of errors fixed, from failed
repairs

4. Relative Error Fix (REF) – new errors introduced

16

Build Repair

Best result: o3-mini

● 27% builds fully repaired

Other models:
DeepSeek V3: 21%
Gemini: struggled with CoT
Qwen: low success

17

File Fix Success Rate (FFSR)

o3-mini : 41% of faulty files
fixed

Prompt ID Deepseek V3 Gemini

2.0-flash

Gpt 4o-mini o3 mini Qwen2.5

32b-instruct

P1 48/252(19%) 48/251(19%) 40/256(16%) 75/242(31%) 41/262(16%)

P2 61/254(24%) 54/248(22%) 46/253(18%) 66/241(27%) 44/263(17%)

P3 62/249(25%) 82/246(33%) 53/262(20%) 89/246(36%) 61/265(23%)

P4 64/255(25%) 87/251(35%) 53/255(21%) 97/239(41%) 46/263(17%)

P5 52/251(21%) 59/260(23%) 36/254(14%) 72/252(29%) 63/268(24%)

P6 42/248(17%) 39/243(16%) 40/254(16%) 74/243(30%) 62/263(24%)

P7 59/244(24%) 71/253(28%) 57/260(22%) 88/238(37%) 61/264(23%)

P8 71/248(29%) 76/250(30%) 53/256(21%) 92/246(37%) 54/267(20%)

18

Compilation Error Fix Rate (CEFR)

Qwen : 9% build success

Prompt ID Deepseek V3 Gemini

2.0-flash

Gpt 4o-mini o3 mini Qwen2.5

32b-instruct

P1 548/938(58%) 680/959(71%) 490/965(51%) 705/941(75%) 529/979(54%)

P2 645/941(69%) 661/955(69%) 548/966(57%) 683/916(75%) 491/983(50%)

P3 553/935(59%) 679/931(73%) 696/979(71%) 736/955(77%) 710/987(72%)

P4 614/942(65%) 687/936(73%) 670/964(70%) 726/938(77%) 622/983(63%)

P5 555/937(59%) 684/978(70%) 531/962(55%) 731/964(76%) 720/994(72%)

P6 534/933(57%) 654/943(69%) 536/973(55%) 712/944(75%) 712/988(72%)

P7 664/921(72%) 711/962(74%) 696/976(71%) 723/937(77%) 669/986(68%)

P8 679/934(73%) 714/959(74%) 680/973(70%) 741/955(78%) 602/997(60%)

72% of original errors fixed in some cases

19

Relative Error Fix (REF)

o3-mini + P4 → 93.33%

Some LLMs (e.g. Qwen2.5)
introduced more errors than they
fixed

Buggy line + API Diff consistently
helpful

CoT works only for reasoning capable
models

20

Conclusion

● LLMs can effectively repair compilation errors caused by breaking
dependency updates, significantly reducing the manual effort required by
developers.

● Including structured context in prompts (buggy line, API differences, and
step-by-step reasoning) greatly improves repair success, leading to accurate
fixes with minimal new errors introduced.

21

Fixing breaking dependency
updates with LLM

Frank Reyes (frankrg@kth.se)

