
Understanding and Preventing
Open-Source Software Supply

Chain Attacks

Piergiorgio Ladisa
3rd KTH Workshop on Software Supply Chain, April 2024

What the hell is a Software
Supply Chain?

Let’s do it the Italian way

pizza-dough-1.0

tomato-sauce-1.1

mozzarella-0.9

basil-0.7.2

yeast-1.0

flour-1.0 wheat-1.0

salt-1.2

tomatoes-0.4

cow-1.0milk-1.0

water-0.4

basil-seeds-1.0

tomato-seeds-1.0

wheat-seeds-1.0

What we absolutely do not
need

What we absolutely do not
need

This is the same with
software

This is a pizza software supply chain

This is a pizza software supply chain attack

More Formally…

A (Software) Supply Chain Attack is
the nefarious alteration of trusted
software before delivery.

-- Russ Cox’s tweaked definition by Kim Zetter [1]

[1] https://research.swtch.com/acmscored

https://www.explainxkcd.com/wiki/index.php/2347:_Dependency

Evil

https://research.swtch.com/acmscored

“[…] at the time of writing in
September 2023, we have logged
245,032 malicious packages —
meaning in the last year, we’ve seen
the number of malicious packages
tripled.” [1]

[1] Sonatype, 9th Annual State of the Software Supply Chain,
https://www.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf

Project contributors

Build System Distribution
Channelclone

publish

download
dependenciesVersion

Control

Project maintainersProject contributors

Consumers

Git hosted by, e.g.

GitHub or Apache

Developer machine, Travis,

GitHub Actions, etc.

E.g. PyPI, Maven Central,

npm, arbitrary websites

Requirements of OSS Supply Chain Attack
ATTACKER

1. Spread out

Malware accessible to
downstream users

2. Get used

Downstream users
engage with malware

3. Get executed

Downstream users
execute the malware

DEFENDER

Detect malicious package
before download or

execution

Problem Statement

Automate Detection

Lack of Comprehensive Description of Third-Party Dependencies’ Execution Techniques

Lack of Comprehensive Safeguards Mapping

Lack of Comprehensive Attack TaxonomyP1

P2

P3

P4

Agenda

Taxonomy of Attacks on OSS Supply Chain C1

Mapping of Existing Safeguards to Related Attack Vectors C2

Understanding How Third-Party Dependencies Achieve
Execution on Downstream Systems

C3

Evaluation of ML-based Approach to the Detection of
Malicious Packages in JavaScript and Python

C4

Evaluation of Static Approach to the Detection of
Malicious Packages in Java

C5

Taxonomy of Attacks on OSS Supply Chain C1

Mapping of Existing Safeguards to Related Attack Vectors C2

Research Questions

• What is a comprehensive list of
attack vectors?

• How to represent attack vectors in
comprehensible and useful
fashion?

Attacks
• What is a comprehensive list of

existing safeguard?

• What is utility and cost of
safeguards?

• Which safeguards are used by
developers

Safeguards

Methodology
Systematic Literature ReviewSystematic Literature Review

Analysis & Modeling

Validation and Assessment

Scientific
Literature

Grey
Literature

Threat Model OSS
supply chain

Attack Tree

Closed cart sorting

Surveyed 17
domain experts

Surveyed 134
developers

Risk Explorer for Software Supply Chains

Available

online

Takeaways

30+ high-level safeguards to
prevent attack vectors

Attacker’s perspective

117 unique attack vectors 370+ scientific and grey
literature references

Based on Systematic
Literature Review

Mapping of Safeguards Assessed by experts &
practitioners
Surveyed 17 experts and 130+
developers

[1] P. Ladisa, H. Plate, M. Martinez, and O. Barais, « Sok: taxonomy of attacks on open-source software supply chains », in 2023 IEEE Symposium on Security and
Privacy (SP)

[2] P. Ladisa, H. Plate, M. Martinez, O. Barais, and S. E. Ponta, « Risk explorer for software supply chains: understanding the attack surface of open-source based
software development », in Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses

[3] P. Ladisa, S. E. Ponta, A. Sabetta, M. Martinez, and O. Barais, « Journey to the center of software supply chain attacks », IEEE Security & Privacy, 2023

Understanding How Third-Party Dependencies Achieve
Execution on Downstream Systems

C3

Research Questions

RQ2
How 3rd party dependencies achieve
execution on downstream projects?

RQ1
What are the strategies to evade
detection of malicious code?

Methodology

• Study of malicious packages (e.g., Backstabber’s Knife Collection [1])
• Analysis of known attacks (e.g., grey/scientific literature)

• Study of malicious packages (e.g., Backstabber’s Knife Collection [1])
• Analysis of known attacks (e.g., grey/scientific literature)
• Comparative analysis of package managers

RQ1

[1] https://dasfreak.github.io/Backstabbers-Knife-Collection/

RQ2

Anatomy of a 3rd-party dependency

A

B

C

D

E

Library

foo-1.0.0

Direct dependencies Indirect dependencies

F

Installing and using 3rd-party dependencies

CLIENT PACKAGE

REPOSITORY

PACKAGE

MANAGER

E.g., pip, npm

E.g., PyPI, npm

Installing and using 3rd-party dependencies (contd.)

Fetch Package Extract Archive Build Runsource dist

pre-built dist

INSTALL PHASE

RQ1 - Achieve Arbitrary Code Execution in
downstream

Techniques 3rd-party dependencies employ to attain ACE:
• When they are installed (install-time)
• When they are run in the context of downstream

projects (runtime)

Ecosystems covered:
• JavaScript (npm)
• Python (pip)
• PHP (composer)
• Ruby (gem)
• Rust (cargo)
• Go (go)
• Java (mvn)

Get Code Executed – Install Time

{

 " name ": " example ",

 " version ": "1.0.0" ,

 ... continues ...

 " scripts ": {

 "pre-install": "** COMMANDS **"

 }

 }

Example of I1 for JavaScript using installation hooks in package.json

(I1) Run commands/scripts
leveraging install-hooks

(I2) Run code in build script

(I3) Run code in build extension(s)

Get Code Executed – Runtime

Example of R2 in Java in the case of typosquatted package
com.github.codingandcoding:servlet-api-3.2.0

(R1) Insert code in methods/scripts
executed when importing a module

(R2) Insert code in commonly-used
method

(R3) Insert code in constructor
methods (of popular classes)

(R4) Run code of 3rd-party
dependency as build plugin

Comparative Analysis
ACE Techniques

Install-time Runtime

Ecosystems I1 I2 I3 R1 R2 R3 R4

JavaScript (npm) ✓ ✓ ✓ ✓

Python (pip) ✓ ✓ ✓ ✓

PHP (composer) ✓ ✓ ✓

Ruby (gem) ✓ ✓ ✓ ✓

Rust (cargo) ✓ ✓ ✓

Go (go) ✓ ✓ ✓

Java (mvn) ✓ ✓ ✓

Examples Available Online and Open-Source

RQ2 - Evasion Techniques

https://memes.com/m/me-hiding-from-my-own-problems-5rWMQbjkn4V

• Data obfuscation alters the way static data is
stored within source code
• e.g., encode strings in base64

• Static Code Transformation modifies source
code such that no runtime modifications are
needed for execution
• e.g., split code in multiple files

• Dynamic Code Transformation transforms
source code at runtime to evade static
analysis
• e.g., encryption of source code

• Can be helpful also to security analyst or to design novel detection mechanisms
• More recommendations in our paper [1]

Presented offensive
techniques

• Equivalent to: curl http://foo.com | bash
• Carefully choose dependencies
• Check their security practices and their content before usage

Blindly installing 3rd
party dependency
can be dangerous

Takeaways

[1] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Martinez, and Olivier Barais. (forthcoming 2023). The Hitchhiker’s Guide to Malicious Third-Party Dependencies. In Proceedings of
the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23).

Let’s talk about detection

Evaluation of ML-based Approach to the Detection of
Malicious Packages in JavaScript and Python

C4

Malicious Code in Python

maratlib-0.2 - setup.py

Use of strings with certain “features”

Obfuscation
(both in code and
in strings)

Exploiting installation time execution

Malicious Code in JavaScript

browserift-16.2.2 – package.json build.sh index.js

Exploiting installation time execution

Use of strings with certain “features”

Goals

One Model
Language-independent features
discriminating malicious vs. benign

Easy to transfer to other languages:
• lexical
• package size/characteristics

Features
Single classifier to detect malicious packages
for npm and PyPI

Benefits:
• More training data
• Classification for multiple languages

Research Questions

RQ2
Which models (cross-language and
mono-language) show best
performances in detection?

RQ1
How do the models identified in RQ1
perform in real-world?

Approach

Malicious samples:
• Backstabber’s Knife Collection [1]
• 2071 in JS, 273 in Python (at time of

writing)
• Remove duplicates
• 102 in JS, 92 in Python

Benign samples:
• Popular projects (from libraries.io)

90-10 ratio to address imbalance problem

[1] https://github.com/cybertier/Backstabbers-Knife-Collection

Labeled Dataset

Learning Algorithms

Unlabeled Dataset

RQ1: Models Evaluation

RQ2: Real-World Evaluation

5-fold cross-validation

Real-world experiment

https://github.com/cybertier/Backstabbers-Knife-Collection

Set of Selected Features
Type Description Captured Behaviour
Boolean Usage of installation hook(s) Arbitrary code execution
Continuous Number of words in installation scripts Structural feature of source code

Continuous Number of lines in installation scripts Structural feature of source code

Continuous Number of words in source code files Structural feature of source code

Continuous Number of lines in source code files Structural feature of source code
Continuous Number of URLs Security-sensitive string(s)
Continuous Number of IP addresses Security-sensitive string(s)
Continuous Number of suspicious tokens in strings Security-sensitive string(s)
Continuous Number of base64 strings Presence of obfuscation

Continuous Mean, std. deviation, 3rd quartile, and max value of
Shannon entropy of strings in all source code files Presence of obfuscation

Continuous Number of homogeneous and heterogenous strings
in all source code files Presence of obfuscation

Continuous Mean, std. deviation, 3rd quartile, and max value of
Shannon entropy of identifiers in all source code files Presence of obfuscation

Continuous Number of homogeneous and heterogenous
identifiers in all source code files Presence of obfuscation

Continuous Mean, std. deviation, 3rd quartile, and max value of
Shannon entropy of strings in installation script Presence of obfuscation

Continuous Mean, std. deviation, 3rd quartile, and max value of
Shannon entropy of identifiers in installation script Presence of obfuscation

Continuous Mean, std. deviation, 3rd quartile, and max value of
ratio of square brackets per source code file size String manipulation

Continuous Mean, std. deviation, 3rd quartile, and max value of
ratio of equal signs per source code file size String manipulation

Continuous Mean, std. deviation, 3rd quartile, and max value of
ratio of plus signs per source code file size String manipulation

Continuous No. of files per selected extensions (91 in total) Structural feature of the package

Structural feature of source
code

Security sensitive strings

Obfuscation

String manipulation

Install-time execution

Included Files

RQ1: Models Evaluation

Python
Mono-language:
• Highest precision: DT (but also high FP!)
• XGBoost best trade-off

Cross-language:
• Highest precision: RF (but also high FP!)
• XGBoost best trade-off

JavaScript

5-fold cross-validation repeated 10 times

Learning algorithms:
• Decision Tree (DT)
• Random Forest (RF)
• XGBoost

Mono-language:
• Highest precision: DT (but also high FP!)
• XGBoost best trade-off

Cross-language:
• Highest precision: DT (but also high FP!)
• XGBoost best trade-off

RQ2: Real-World Evaluation

Package
Repository

Daily Uploaded
Packages

Feature
Extraction

Cross-language
Classifier

Mono-language
Classifier

Malicious
Package

Benign
Package

Manual
Inspection

RQ2: Real-World Evaluation (contd.)

Python JavaScript
↑ Language-specific +108 FP than

Cross-language

↑ Cross-language +2 TP than
Language-specific

↑ Language-specific +146 FP than
Cross-language

↓ Language-specific +1 TP than Cross-
language

Insights on Malwares and Takeaways

Majority aim at data exfiltration

One sophisticated case of dropper using
DNS req. to bypass firewall

Malware campaigns (also cross-language)

Most of findings do not obfuscate the code

Cross-language detection promising
0 10 20 30 40

PyPI

np
m

Malicious Behaviours

Key Logger Dropper Data Exfiltration

Reverse Shell Rickrolling Attack Research PoC

[1] P. Ladisa, S. E. Ponta, N. Ronzoni, M. Martinez, and O. Barais, « On the feasibility of cross-language detection of malicious packages in npm and pypi », in Proceedings
of the 39th Annual Computer Security Applications Conference, ser. ACSAC ’23

Evaluation of Static Approach to the Detection of
Malicious Packages in Java

C5

RQ2
What are simple-yet-effective
indicators of malicious
behavior that can be observed
from the bytecode?

RQ1

Research Questions

How those indicators and their
combinations perform when
detecting malicious Java
packages?

RQ1: Bytecode Static Analysis

Package
Repository

JAR

Bytecode
Instructions

Class Files

Constant
Pool

• (Shannon) Entropy
Analysis

• Language-Based
Filtering (Relative
entropy vs. language
detection)

• Sensitive Strings

Strings

§ Sensitive APIs (e.g. Execution,
Connection)

§ Empty-Catch Clauses

§ Intra-procedural Data Flow Analysis

RQ2: Empirical Evaluation

Top10
Packages

JARs Malicious
Injection

[1]

AnalysisOriginal + Infected
Versions

[1] https://dasfreak.github.io/Backstabbers-Knife-Collection/

Takeaways

• Shannon entropy at class level rather
than at JAR level

• Best filter: Shannon entropy +
Language detection

• Presence of sensitive APIs not
sufficient.

• Effective when combined with other
indicators (e.g., sensitive strings)

String Analysis

Empty Catch
• Really effective, esp. combined with

sensitive APIs + suspicious strings.
• Really effective esp. when combined

with suspicious strings

• Can be expensive in terms of
performances

Data Flow Analysis

Sensitive APIs

[1] Ladisa, P., Plate, H., Martinez, M., Barais, O., & Ponta, S. E. (2022, November). Towards the Detection of Malicious Java Packages. In Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses

Conclusions

Challenges & Perspectives

• Keep historical data up to date [1,2]
• Research opportunities beyond technical (e.g., user interaction, secure project management)

Attack surface is broad
and socio-technical

[1] Risk Explorer for Software Supply Chains, https://github.com/SAP/risk-explorer-for-software-supply-chains
[2] Software Heritage, https://www.softwareheritage.org

• Extremely beneficial for researcher
• Vendors tend to keep them private
• Package repositories makes them unavailable

Limited availability of
malicious samples

Future research
• Expand on mitigations (e.g., systematize proposed frameworks)
• Challenges related to SBOMs and SCA and improve standards
• Explore potential of AI and LLMs for malicious code detection
• Secure-by-design package management system

https://github.com/SAP/risk-explorer-for-software-supply-chains

... You?

• 6 Scientific Papers (of which IEEE S&P and ACSAC)
• Open-source:

• Risk Explorer for Software Supply Chains tool
• Arbitrary Code Execution examples in multiple ecosystems

• ML models and labeled dataset

• Reported ~60 malwares

Contributions

Conclusion

Who’s talking
about us

[1] P. Ladisa, H. Plate, M. Martinez, and O. Barais, « Sok: taxonomy of attacks on open-source software supply chains », in 2023 IEEE Symposium on Security and Privacy (SP)
[2] P. Ladisa, H. Plate, M. Martinez, O. Barais, and S. E. Ponta, « Risk explorer for software supply chains: understanding the attack surface of open-source based software development », in Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and
Ecosystem Defenses
[3] P. Ladisa, S. E. Ponta, A. Sabetta, M. Martinez, and O. Barais, « Journey to the center of software supply chain attacks », IEEE Security & Privacy, 2023
[4] https://github.com/SAP/risk-explorer-for-software-supply-chains
[5] P. Ladisa, M. Sahin, S. E. Ponta, M. Rosa, M. Martinez, and O. Barais. (forthcoming 2023). The Hitchhiker’s Guide to Malicious Third-Party Dependencies. In Proceedings of the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23).
[6] https://github.com/SAP-samples/risk-explorer-execution-pocs
[7] P. Ladisa, S. E. Ponta, N. Ronzoni, M. Martinez, and O. Barais, « On the feasibility of cross-language detection of malicious packages in npm and pypi », in Proceedings of the 39th Annual Computer Security Applications Conference, ser. ACSAC ’23
[8] https://github.com/SAP-samples/cross-language-detection-artifacts
[9] Ladisa, P., Plate, H., Martinez, M., Barais, O., & Ponta, S. E. (2022, November). Towards the Detection of Malicious Java Packages. In Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses

CISA, Open-Source Software Security Roadmap, https://www.cisa.gov/sites/default/files/2023-09/CISA-Open-Source-Software-Security-Roadmap-508c%20%281%29.pdf
Microsoft, Secure Supply Chain Consumption Framework (S2C2F), https://www.microsoft.com/en-us/securityengineering/opensource/
OpenSSF, Threat Modeling the Supply Chain for Software Consumers, https://openssf.org/blog/2023/09/27/threat-modeling-the-supply-chain-for-software-consumers/

https://github.com/SAP/risk-explorer-for-software-supply-chains
https://github.com/SAP-samples/risk-explorer-execution-pocs
https://github.com/SAP-samples/cross-language-detection-artifacts

